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1. Phys.: Condens. M u t a  7 (1995) 5491-5506. Printed in the UK 

Unified description of quantum particles and 
electromagnetic and elastic waves in multilayers 

G Monsivaist. F Garcia-Moliner and V R Velasco 
lnstitulo de Ciencia de Maleriales, CSIC, Serrano 123,28006 Madrid, Spain 

Received I March 1995, in final form I 1  May 1995 

Absl rad  Some relevant mathematical properties of quantum particles. polarized elecuomag- 
netic waves and elastic shear horizontal Waves in multilayer systems are discussed in a unified 
way. The time-independent wave equations describing these problems are isomorphic for the 
lhm cases. bul the matching boundary conditions are different. These are also described in 
common mathematical form by means of appropriate quantities. 

Phenomenological concepts and parameters of quantum scattering theory are thus related 
to different transfer mavices ofien used for both quantum and classical systems. All multilayers 
are shown 10 have the same statistical properties beyond characteristic lengths established by an 
application of the cenkal limit lheorem to lhe different problems. A Poincar6 map represenlation 
which often has practical advantages for numerical computation is also set up in a mathematical 
form common lo all cases. 

1. Introduction 

Although general analogies between electromagnetic waves, elastic waves and quantum 
particles-khrodinger equation-have long been noted in the literature [ 1-31 the study of 
wave propagation through a multilayer structure is usually carried out in different ways for 
different types of wave. In particular, basic concepts of scattering theory [2,4], which are 
always used to study the propagation of a quantum particle, are seldom employed for other 
types of wave. The study of the elastic wave propagation in layered media has been an 
important subject in seismology, and a good summary can be found in [5]. Some different 
and more recent approaches can be found in [&SI. We shall restrict our study to the 
simpler cases in order to fully develop the connections between the different problems. In 
this paper we sIudy the quantum particle (QP), shear elastic waves (SEW) and polarized 
electromagnetic waves (EM-S or EM-P) in a unified way. This puts the two classical 
problems in a frame in which one can make full use of concepts which have proved very 
useful in quantum mechanical scattering theory. 

The differences between these cases lie in the matching boundary conditions at the 
interfaces but their role can be described in a unified form-section 2-and related to 
different concepts of transfer matrices that one can define. These in turn are related in 
different ways to phenomenological and scattering theoretic concepts. These relationships 
are studied in section 3, which includes also a discussion of the statistical aspects. 

On the other hand, a Poincari map [9] representation is known to be useful as a basis for 
an algorithm for doing numerical calculations. It will be seen in section 4 that starting from 
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one of the transfer matrices an appropriate Poincart map representation can be easily set up 
which provides a computational algorithm to study particle or wave propagation through a 
multilayer structure. 

2. General formulation and matching boundary conditions 

We consider a multilayer structure with interfaces at positions zn where contiguous media 
match, with medium (n - 1) on the lefi and medium n on the right of z,. We shall study 
a piecewise homogeneous system in which all material parameters-effective mass (m'), 
average potential ( V ) ,  density (p).  shear rigidity modulus ( f i )  or dielectric constant (€)-are 
piecewise constant and vary in a stepwise manner, so each constituent slab is a homogeneous 
material by itself. 

First consider an infinite bulk homogeneous medium and an amplitude of the form 

a(z) (1) 
resulting from a 2D Fourier transform with 2D wavevector Q in the x or ( x ,  y) plane, 
perpendicular to the z direction. The corresponding planar projection of he differential 
equation 

ei(Q.z-a) 

($ + KZ) a(z) = 0 

holds for the following cases. 

(i) Q P  the Schrodinger equation, with wavefunction 

q , ~ ( ~ ,  t )  = ei(Q~s-4 $(z) d z )  = !Hz) 
and 

(3) 

K = Js. - ( E  - V )  - Qz. 

(ii) SEW shear 'horizontal' elastic waves, with vibration amplitude in the y direction, 

U = (0, U, 0) ~ ( r ,  2) = ei(Q'z-orl u(z) a ( z )  = u ( z )  (5 )  

K = ,/s v = 8 = shear wave velocity. (6) 

(iii) Polarized electromagnetic waves. This case requires some comment. First we 

and 

consider the 2D Fourier transforms of the electric ( E )  and magnetic (a) fields: 

~ ( r ,  t )  = ei(*"-")E(z) B(T, I) = ei(Q'z-wr)B(z). 0) 
By eliminating either E or U from Maxwell's equations, the 2D Fourier-transformed 
differential equation for the remaining field is also (2) with 

but the amplitude is then the vecfor E ( z )  or B(z). Thus, all the components of these 
vectors satisfy the scalar differential equation (2) and therefore each one of them has the 
form 

(9) a(z)  = a t e i K z  + a-e-iKz 



Particles and waves in multilayers 5493 

However, in the S-polarized case (EM-S) the amplitudes are 

E = (0. Ey.  0) B = (B,,O, E,) (10) 
and, since B can be obtained from curl E ,  the three non-vanishing components are related 
by means of 

where (u*)Q are the coefficients defined in (9) associated with Ey, etc. Therefore, for the 
calculation it is sufficient to work with only one component. Alternatively, if one wants 
to work with the coefficient associated with the total field, i.e. (a*)& = -,/(a*)& . (a*)& or 
(u*)B = J(u*)B. (a*)o, where (a*)& = ( ( u * ) E ~ ,  ( u * ) E ~ .  @*)eL), etc. one finds 

(12) 
* * 1 

(a )KY = (a )& = f-(u*fs. & 
Likewise, in the P-polarized case (EM-P) the amplitudes are 

and, again, it suffices to work with only one component since 
E = ( E x ,  0, E,) B = (0, By,  0) 

which follows from the Maxwell equation for curl B. Furthermore 

(a*)B,  = ((1% = &(U*)&. (15) 
Now consider an interface, say at z = 0, where two media match and denote 

(16) 

In general these functions may be discontinuous, so that Au and ha‘ may not vanish. 
However, from the physics of the problems it is easy to identify factors fi and n such that 

, d a  
de 

A0 = u(+O) -a(-O) Au‘ = a’(+O) - U’(-0) U = -. 

A(Qa) = 0 A(IIu’) = 0. (17) 
In fact these equalities express the matching boundary conditions at the interface. All the 
cases under study can then be described in a mathematically identical form in terms of 
a, fi, a’ and n, given in table 1. The factors hl and n are of course different for the 
different components of the electromagnetic field. However, it is easy to prove that for the 
S-polarized case they satisfy 

(18) 
0 2  W t  

( ~ ~ K ) E ~ I ( U * ) E ~ I ~  = $finK)Bzl(a*)Bx12 = ~ Q Z ( ~ ~ ~ K ) B , I ( U * ) B ~ I ~  

and 

I(U*)EYl2 = l(U*)&12 = lE*12 (1% 
where (QnK),= represents the values of ( Q n K )  for the component F (Eyr  Bx or E&) of 
the electromagnetic field. Similarly, for the P-polarized case they satisfy 

and 

l (a*)By12 = l(a*)BI2 = 18*12. (21) 
We shall now study the form of the amplitudes for the multilayer structure and the transfer 
matrices which can be defined from them. 
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3. " d e r  matrices, phenomenological properties and scattering theoretic concepts 

We now consider the multilayer system. Each constituent medium is a slab of a different 
homogeneous medium n which, as a bulk homogeneous medium, would be described by 
(1)<15) with Corresponding values of m:, V., p,,, f i n  or G". Each interface is at z = z,, 
and at each one (16), (17) and table 1 are correspondingly applied, with a(&) meaning 
a(z, f O), etc, in an obvious way. 

In domain n, contained between zn and zn+lr the form of a(z) is 

a(z) an(z) = aieiKaz + a;e-iKnz. (22) 
Now, define the following 2-vectors: 

where we have defined 

A. = KnQnn,. (24) 
These 2-vectors are variously used according to convenience. Thus a(z) is practical when 
a(z) and a'(z) are continuous, while p(z) is useful when there are discontinuities, as p ( z )  is 
always continuous: y.(z) displays the two components of (22) separately while displays 
the two coefficients of (22) separately and 2. is more convenient if one seeks a connection 
with a scattering theoretic S matrix analysis. The process of integration of the differential 
equation involves of course all the matching boundary conditions at the interfaces as well 
as the external or asymptotic boundary conditions outside the multilayer structure, but it 
can also be partly viewed as the transfer of any of the 2-vectors defined in (23) and this 
defines different transfer matrices, depending on the choice of the 2-vector to be transferred. 
The one associated with a(z)  has been fully discussed in [IO] and further in [Ill where, 
under the name f u l l  transfer matrix, it has been related to the propagator and to Green 
function matching techniques. This analysis has also been extended to more complicated 
situations when the constituent slabs are not necessarily homogeneous or when one deals 
with a differential system [ 121, but this is outside the scope of the present study which is 
concemed with one differential equation and piecewise homogeneous structures. Among 
the different transfer matrices we shall concentrate mainly on those associated with in and 
An, as these will be seen to relate directly to reflection and transmission coefficients, which 
allows for a direct contact with the scattering matrix [13]. 

We define the matrix D ( z )  relating a and j3 

Then, at a given interface. from the continuity of j3 and the definition of D applied to the 
two media 

a(+) = I. a(-) 7 = D - ' ( + ) .  D( - ) .  (26) 
Thus I is a marching transfer matrix, which transfers a(z)  across a matching interface from 
its - side to its + side. If the interface separates medium (n - 1) on its left from medium 
n on its right, then the corresponding 7 is 
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Now apply (22) to i n ( z ) ,  letting z + zn + 0, and to B-1 (z), letting z -+ zn - 0. Then 

and 

which yield 

ci, = Mn,,,-iZn-i 
Evaluation of this matrix yields the result 

Mn,"-t = Nn-' . B,' . D r l  . Dn-l . Bn-i . Nn-i . An-]. (30) 

(U + cK,-i/K,)e-"- (U - <Kn-l/Kn)e-iA+ 
(U + ( ~ ~ - l / K " ) e ~ * -  I '  (31) 

I%f",n-l = 2 1 1  (U - - (Kn-] /K")&*+ 

A* = ( K ,  f K,-i)Zn. nn-] 
Q* n. 

<=-  

Table 2 gives U and { for the different physical problems listed in table 1. 

%-I U = -  

Table 2. The panmeters a and < of (31) for the physical problems listed in lable 1. 

QP SEW EM-S EM-S E M - S  EM-P EM-P EM-P 

a *  U EY BX 8, E,  E ,  BY 
a 1  1 I I I I €n-l/€n I 
I m.lm.-l vn-llvn 1 K , ~ I K , ' . ~  I K , h - ~ l K Z - ~ e m  1 c"icn-l 

Note that from equation (12) it follows that the transfer matrix for ( ( u z ) ~ ,  ( u ; ) ~ )  in 
S polarization is equal to the transfer matrix for ( @ : ) E y ,  (u;)Ey). Similarly, the transfer 
matrix for ((u,+)B. (u;)B) in P polarization is the same as the one for (@;)By, @;)By) (see 
equation (15)). 

We now concentrate on the study of wave propagation allowed in all the constituent 
media, when all K, are real. It is then easily proved (appendix) that 

Let M be the transfer matrix from z L  = 
media L / R  to the lefthight of zL/zR then 

to Z R  = zn and assume also homogeneous 

is the matrix which transfers (IL =&,,-I to Z R  
the general form of UL ( z )  is 

ci, for a s m c m e  with m layers. Now, 

z < Z L  
ZL < Z < Z R  (34) 
Z R  $ 2  
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with Kr _= Kc-,,-{, K R  K, and that of a.p(z) is 

(35) 

This describes the full waves in terms of incident and transmitted waves with 
corresponding reflection and transmission amplitudes, which can be easily related to M. 
Indeed, an arbitrary solution with incidence from both sides is 

z < ZL 

ataL(z) + a,aR(z) = ZL < z < Z R .  
aie-jK*2 + -t rRa;)eiKRz Z R  < z  

Thus the amplitudes a;, a i  of the outgoing waves are 

a i  = tLat + rRa; a; = ma,+ + tRa; 

Since, on the other hand, by definition 

we have 

(36) 

(37) 

Furthermore, the Wronskian of any two linearly independent solutions of the differentia1 
equation describing the full multilayer structure satisfies the relation 

S~LI'ILW(ZL-O) = Q R I ' I R W ( Z R + O )  (39) 

and applying this to the four pairs (aL, aa), {aL, a t ) ,  [aL, a i ]  and [aR, a i }  we find 

ALtR = ARtL A L [ ~  - I r ~ l ~ ]  A ~ l t ~ 1 '  
ALr& = --1\RTitL ALI~R~ '  A R [ ~  - I ~ R I ~ ] .  (40) 

Therefore 

whence we obtain the simple relationship 

between the elements of M and the phenomenological scattering amplitudes of the multilayer 
structures. We also note, from (32) and (33), that 

(43) 121. det M = - 
AR 

which equals unity only if the two media outside are equal. 

to study a system in an electric field [14] can be defined by 
A transfer matrix M with determinant identically equal to unity which has been used 

- - 
A n  = M n , n - i A n - ~  (44) 
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which, by (U), is 

Then, with all K, real 

Thus these matrices have the interesting property that they belong to the SU(1,l) group. 
As in (33), the matrix M which transfers 6 ,  to & is 

M = Mn.n-1 . Mn-1 .n -2 . .  ' M n - m + ~ , n - m  . M n - m n - m - ~  (47) 

det(M) = 1 (48) 

which also belongs to SU(1.1) and therefore 

as is obvious Rom the definition (44). Now, we define 

It follows from (43) and the first of (40) that 

On the other hand, from (41H453, (48) and (50) 

This has an interesting physical meaning which bears out the phenomenological relevance 
of M .  

Consider, for each medium n,  the flux in the z direction j, defined in (A6). Suppose, 
for instance, that there is only incidence from the right, so that a: = 0. Then the ratio of 
transmitted to incident flux is 

as follows Rom (23), (36). (42) and (48), while the ratio of reflected to incident flux is 

Thus (52) expresses the rule 

T + R = l .  

On the other hand, from the fmt and the thiid of (40) we have 

lkLl = lrRl 

lrLl*+ lrdz = 1 

and, from (50), it follows that (52) implies 

(55) 
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as is obvious on physical grounds. We note that, although the transfer matrices associated 
with each component of the electromagnetic field are in general different, all of them give 
rise to the same T and R as defined in equations (53), (54). In fact, from equations (18). 
(20) we have that the value of (&/AL)laR+/at12 is the same for dl the components. 
Furthermore, from equations (19), (21) and since K L  = Kn-,,-,, K R  = K., we see that T 
equals the ratio of the transmitted energy flux to the incident energy flux in the z direction, 
i.e. T = 12 . s;l/l? * .:I, where s: is the Poynting vector. Thus jn (A6) is the energy 
flux in the z direction and the same holds for the SEW case, while in the QP case it is the 
probability density current. 

It follows from these results that, while a 2 x 2 complex mahx has in general eight 
parameters, the matrix M of (57) can be expressed in terms of just three parameters. so 
we can cast M for the different physical problems here studied, classical and quantum, in 
terms of the Bargmann parameters 8, U, e [ 151 as 

R e = -  
T 

This extends the Landauer formula [16] for the dimensionless resistance e of the QP case 
to the classical EM and SEW cases. 

The latter requires a trivial clarification when the multilayer structure terminates at the 
vacuum. Suppose an incident wave in medium L = n - m - 1 meets the multilayer structure 
with the vacuum in medium R, on the right, where there is no elastic wave amplitude. 

The total reflectivity then has unit amplitude and the only unknown is its phase. From 
(29). formally 

but at the interface with the vacuum the stress @,-la'(zn - 0) vanishes, whence we obtain 
the ratio .,/at. 

Having discussed the relationships of the transfer matrices with the phenomenological 
concepts of scattering theory, it is now interesting to discuss the relationship with alternative 
scattering matrices. We shall concentrate on those associated with a,' and A:, but will later 
mention the connection with other scattering matrices which can equally be defined. We 
start by defining S by 
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where outgoing amplitudes are obtained, through S, from incoming ones. From (36) and 
(38) 

which in general is not unitary. 
amplitudes, i.e. 

If instead we define the matrix S which relates A* 

then 

From the above results we find 

Thus, in correspondence with (48)-mathematically-and (55&physically-S is a unitary 
matrix. Its eigenvalues are 

e''! = + ilrLl)eib e'& = ( [ T L I  - ilrLl)ei4a (69) 
with 61 + 62 = Z+,. We note that if we permute the rows of the matrix defined in (67) 
(which corresponds to the definition used in [171), the determinant is equal to -q/t; and 
the eigenvalues are given by 

ei'/,l = (~rLlcos+*iJ~  -lrL12cos2+)eiQ (70) 

with 8; + 8; = Z+, + r. On the other hand it is easy to prove that the density of states 
contained in the scatterer is given by [I71 

It is also interesting to discuss another scattering matrix, S", which relates functions, 
rather than coefficients. For this we note that, since a ~ ( z )  and Q(Z) are linearly independent 
and n; ( z )  and a;(z )  are also solutions of the differential equations, the latter must be linear 
combinations of the former. In fact, from the above results we find, after some algebra 

with 

If is easily seen that S" js Ibe jnvem? of S and its eigenvalues are the complex conjugate of 
those of (67). The amplitudes a~(z)-see (34)-and aR(z)--see (35)-are incoming state 
amplitudes consisting of one incident-unperturbed-wave and two scattered waves. In the 
range of allowed propagations their complex conjugates are outgoing state amplitudes and 
it is easily seen that these amplitudes satisfy equations of the LippmannSchwinger type, 
as in quantum scattering theory [2,4]. 
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Now, S" can be diagonalized by means of the matrix 

and if we define new amplitudes @ by 

then (73) reads 

(75) 

Moreover, the relationship between incoming-outgoing amplitudes acquires then a different 
form displaying the role of the phases. Thus 

l / i @ ; ( z )  = 

where q = 2, 1 when p = 1,2. In this picture the incident and reflected waves have the 
same amplitude and the phases of the incident waves are directly related to the phases of the 
coefficienis of a'(z) and aR(z) in the linear combinations of (76). while the phases of the 
reflected waves involve also the additional terms -&, which are the phase shifts produced 
by the entire multilayer structure as a scatterer. 

z d Z L  

ZL d~ < Z R  (78) 
I ~ ; 1 / 2  ((-1)p-li ei(Err-+,) + e-i(KLz-+,L+8q) 

hi'/* e-'@,"hR(z) + (-1)Pi A~l'*e-'~,hL(z) 1 A-112 -R {e-i(Knz++rn) + ( -1)~i  ei(K~:++t-6,4] Z R  < z 

The situation is the opposite for 

@y(z) = e- @,b" ( 2 ) .  (79) 
By using (60) it is seen that for the @'"'(z) waves it is the reflected amplitudes that are 
undistorted, while the incident amplitudes have phase shifts. We stress that (79) holds 
everywhere, for all z ,  even inside the multilayer structures. On the other hand, if we define 
a scattering matrix S"' which relates asymptotic amplitudes, then we find that this is the 
matrix S of (65) [18]. However, this definition has the disadvantage that is not directly 
generalizable to the case KL # K R .  

Now, the different physical problems here considered have different values of R and n 
and therefore they have different transfer matrices. Thus some details can be significantly 
different, as is borne out for instance by the study of Stark ladder resonances in the different 
cases [19-211. However, the common mathematical form suggests that for sufficiently large 
lengths the statistical properties should be the same in all cases as we shall see below. Let 
p n  denote the value that some characteristic parameter-m;, V,, U, or en--takes in the 
constituent slab n .  We note that, since disorder reads to a randomization of the phases [22], 
if we have an ensemble of N disordered systems of length L, all with the same values of 
p L  and p~ with some distribution of { p j ) ( n  - 1 - m c j c n ) ,  as C increases-with the 
number m of layers or 'scatterers' also increasing-the distribution of phases &, $+R, q5r~ 
tends to spread out. We define the randomization length t as the value of L for which the 
Bargmann parameters 13, U are uniformly diseibuted between -a and +a, We denote by 
.f(QP), L(SEW) and C@M) the value o f t  for the different physical problems here considered. 
These values of course could be different, but if 

L > max [l(QP), ((SEW). ((EM)) (80) 
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then we expect the statistical properties to be equal in all cases. In fact it has been proved 
analytically [ 14,231 that if C z .? then the average properties of the Bargmann parameter 
e obey a generalization of the central b i t  theorem in which the distribution P,,,(M) of 
the total matrix M is independent of the distributions Pl(Mj-1~) of the partial matrices. 
The generalization is obtained by performing averages over the SU(1,l) group and it is 
found that, for the case pr. = PR, the distribution of In(1 + e )  is Gaussian. This has also 
been obtained in various numerical calculations for the different physical problems here 
considered [ 1,2626 and references therein]. In the quantum mechanical case the average 
of In(1 + e) is usuaUy written in the form [91 

(81) 
C 

(In(1 +e))  = 2-. 
L C  

This defines the localization length L, which can therefore be obtained from the easily 
performed average over a Gaussian distribution. 

On the other hand, for the less studied case PL f PR, the distribution of In(1 + e )  is 
not Gaussian [9,27] but it is also independent of the distribution Pl(M"-lJ of the partial 
matrices Ma-,," as was also proved analytically 1141. Therefore, the statistical properties 
of the three systems are again the same. 

4. Poinark maps for a multilayer structure 

It has been found that the usual 1D Schriidinger equation admits a Poincar€ map 
representation for some potentials [9,2&361 including models of nonlinear systems. 
Basically this is an alternative to the transfer matrix. The Poincar6 map method appears 
to have in practice definite advantages especially when one needs both the wavefunction 
and its derivative with respect to energy or in the study of nonlinear systems I31.331. It 
is interesting to stress that the Poincar.4 map representation can equaUy be set up for the 
physical problems here considered. The 1D stepwise potential is just a particularly simple 
case, but a stepwise variation of the effective mass for a particle in a 3D multilayer can also 
be included and, in keeping with the mathematical isomorphism, the method can equally be 
applied to the SEW and EM cases. From (28) and (29) we have 

which in particular yields a formula for a'(zn + 0) in terms of a(z. + 0) and 
Using this in (82) we obtain the PoincarC maps 

+ 0). 
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c n  
.%-I 

- I X - i K n - i  * -U(Z,-I +O). 

Similar relationships between the amplitudes evaluated at zn+l - 0, zn - 0 and zn-i - 0 can 
be likewise obtained. 

To use the Poincar.5 map representation between the points Z L  and Z R  we need to give 
two values of a(z )  which can be given when we have an incoming wave from one side 
[9], that is, incident and reflected amplitudes on one side and only a transmitted amplitude 
on the other side-except for the SEW case, which wrill be presently considered. For 
incidence from the right, for instance, the amplitude of the left is a i  exp(-iKrz), which 
we evaluate at two different points, Z L , ,  ZLU on the left of Z L .  Then, by using (84) we obtain 
a(z) everywhere, including two arbitrarily chosen points z p  and z p  on the right of ZR. 
To calculate the transmission and reflection coefficients we need the coefficients associated 
with the wave on the right which, by (28), (83) and (84). are given by 

- -iknzn 
(85) 

where we have used the fact that Q, Il and K are the same for Z R  as for z p  and Z R " ,  which 
are two arbitrady chosen points in the same medium R .  Similar formulae for ut ,  and U; 

respectively hold for incidence from the left with the changes (ZR, Z R , ,  Z R U )  + (zL, ,  ZL" ,  Z L W )  

and KR --t -KL except in ( Z R ,  - ZR) that must be changed by -(ZL - zu) .  In the SEW 
case, for incidence from the right and vacuum on the left there is no amplitude for z < Z L .  
However, since the stress L ( ~ - ~ u ' ( z ~ - ~  +0) vanishes, from a similar equation to the second 
equality of (84), with the appropriate and evident changes we can calculate a(z,,+z + 0) 
as a function of &-,,,+I + 0) and, using these two values in the first equality of (84), we 
can cany out the process as in the other cases. 

Thus a Poincar.5 map representation can be set up in a l l  cases and used as an algorithm 
for doing practical calculations. 

~ ( Z ~ . ) @ R ( Z R ' - Z R )  - ~(z~, , )$RzR a(z,+) - aRe 
a i  = U,+ = 1 - e-%K~(za-zn) 

5. Conclusions 

Since the different physical problems here considered can be cast in the same mathematical 
form, this isomorphism can be used to set up one single formal treatment in which 
different concepts of transfer mahices are related to various scattering matrices that one 
can define, and to phenomenological concepts and parameters of quantum scattering theory, 
which is thus equally applicable to the classical wave problems under consideration. The 
distinguishing feature of these various cases lies in the matching boundary conditions at the 
interfaces which, however, can also be cast in the same mathematical form in terms of the 
quantities Q and n given in table 1. 

Numerical calculations can be carried out with the same algorithm for all these cases by 
appropriate transliteration, the input consisting of the corresponding values of the parameters 
entering each problem and characterizing the materials under study. This algorithm can 
be based on the use of transfer matrices but an interesting alternative can be based on 
Poincar.5 map representation which often has practical advantages and can also be set up in 
a mathematical form common to all cases. 
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Such a completely unified treatment is only possible for the case of stepwise varying 
parameters. This is a simple model which. nevertheless, is very often useful in practice. For 
more general models it would not be possible to obtain a completely unified treatment, but 
part of the analysis here presented could be extended. For instance, the relationship between 
the full transfer matrix and the propagator is quite general and holds for any differential 
system [I] ,  121, which may include, say, a many-band envelope function model, a full 
study of the 3D elastic vector field or a complete analysis of EM waves including coupling 
between longitudinal and transverse waves. Moreover, the propagator can be easily related to 
the phenomenological parameters of scattering-i.e. reflection and/or transmission-theory 
[12]. It would be interesting to pursue such attempts as partial extensions of the present 
analysis. 

Another interesting aspect concerns the statistical properties of multilayer structures, 
discussed in section 3. The fact that one can identify transfer matrices belonging to 
the SU(1,l) group allows one to apply the generalization of the central limit theorem 
for this group, thus establishing that, for lengths larger than the maximum randomization 
length of the different problems here considered, the statistical properties of the multilayer 
structure are the same in all cases and, in each one of them, for lengths larger than its own 
randomization length, the total transfer matrix is independent of the detailed distribution of 
transfer matrices for the different layers, i.e. of the details of the multilayer structures. These 
properties are likely to hold also for more general models, which would constitute another 
interesting task, as well as for more detailed studies, in any case, of the randomization 
lengths for the different physical problems. 
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Appendix. Symmetries of the transfer matrix 

Consider the form of a(z) given in (22). For allowed propagations, with all K,, real, the 
complex conjugate 

a*(z) = (a;)*eiK.' + (n,+)*e-'Knz (-41) 

is also a solution of the same differential equation and therefore the components of the 
2-vector Z; are also transferred by the same transfer matrix as the ones of ri, are in 
(30). Thus 

Taking the complex conjugate, and denoting in this appendix for simplicity (Mn,,+l)ij = Mij 
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Hence, from (A4) and (30): 

MI, = M;2 Mi2 = M;I (W 

which proves (32). 

(omitting the terms with null divergence) 
Now define the flux in the z direction. For medium n this can be cast in the form 

jn = CA. [1a:l2 - la;l2]. (A6) 

Here j, is the probability current density, elastic energy flux or Poynting's vector for the 
QP, SEW or EM waves respectively in the z direction. In the last case the factor A and the 
amplitudes a* are those pertaining to E,, B, or EL for S polarization or By,  Ex or E, for 
P polarization (see equations (18). (20)). In all cases C is a constant, independent of the 
medium. We can now cast the type of analysis presented in [37] for the QP in a way which 
is common to all the physical problems here considered. We note that jn can be written in 

(A7) 
the form 

jn  = CA,~ , !  . ur . ri, 

where U? is the Pauli matrix 
1 0  

Equating fluxes at zn f 0 we have 

whence 
An-] 
A" 

det(M,,,-I) = -. 

Since the total "fer matrix across a multilayer stack is the product of the partial transfer 
matrices, the formula (43) follows from (AIO) on general grounds and, by the same argument 
we obtain also (48) which is thus seen to follow directly from flux conservation. The results 
contained in (52)+5) bear out a complementary aspect of this basic property. This implies 
in turn that the S matrix of equation (67) is a unitary matrix but not the S matrix of 
equation (65). 
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